dc.contributor.author |
Agarwal, Ravi P.
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Rezapour, Shahram
|
|
dc.contributor.author |
Salehi, Saeid
|
|
dc.date.accessioned |
2020-04-29T22:49:38Z |
|
dc.date.available |
2020-04-29T22:49:38Z |
|
dc.date.issued |
2014-10-31 |
|
dc.identifier.issn |
1687-1847 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3527 |
|
dc.description.abstract |
In this manuscript we investigate the existence of the fractional finite difference equation (FFDE) Delta(mu)(mu-2)x(t) = g(t + mu - 1, x(t + mu - 1), Delta x(t + mu - 1)) via the boundary condition x(mu - 2) = 0 and the sum boundary condition x(mu + b + 1) = Sigma(alpha)(k=mu-1) x(k) for order 1 < mu <= 2, where g : N-mu-1(mu+b+1) x R x R -> R, alpha is an element of N-mu-1(mu+b), and t is an element of N-0(b+2). Along the same lines, we discuss the existence of the solutions for the following FFDE: Delta(mu)(mu-3)x(t) = g(t + mu - 2, x(t + mu - 2)) via the boundary conditions x(mu - 3) = 0 and x(mu + b + 1) = 0 and the sum boundary condition x(alpha) = Sigma(beta)(k=gamma)x(k) for order 2 < mu <= 3, where g : N-mu-2(mu+b+1) x R -> R, b is an element of N-0, t is an element of N-0(b+3), and alpha, beta,gamma N-mu-2(mu+b) with gamma < beta < alpha. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Springer Open |
tr_TR |
dc.relation.isversionof |
10.1186/1687-1847-2014-282 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Fractional Finite Difference Equation |
tr_TR |
dc.subject |
Fixed Point |
tr_TR |
dc.title |
The Existence of Solutions For Some Fractional Finite Difference Equations Via Sum Boundary Conditions |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Advances In Difference Equations |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |