DSpace Repository

A Quadratic-Phase Integral Operator for Sets of Generalized Integrable Functions

Show simple item record

dc.contributor.author Al-Omari, Shrideh Khalaf Qasem
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2020-05-02T04:57:53Z
dc.date.available 2020-05-02T04:57:53Z
dc.date.issued 2020-05-15
dc.identifier.citation Al-Omari, S.K.Q.; Baleanu, D., "A Quadratic-Phase Integral Operator for Sets of Generalized Integrable Functions", Mathematical Methods in the Applied Sciences, Vol. 43, No. 7, pp. 4168-4176, (2020). tr_TR
dc.identifier.issn 01704214
dc.identifier.uri http://hdl.handle.net/20.500.12416/3586
dc.description.abstract In this paper, we aim to discuss the classical theory of the quadratic-phase integral operator on sets of integrable Boehmians. We provide delta sequences and derive convolution theorems by using certain convolution products of weight functions of exponential type. Meanwhile, we make a free use of the delta sequences and the convolution theorem to derive the prerequisite axioms, which essentially establish the Boehmian spaces of the generalized quadratic-phase integral operator. Further, we nominate two continuous embeddings between the integrable set of functions and the integrable set of Boehmians. Furthermore, we introduce the definition and the properties of the generalized quadratic-phase integral operator and obtain an inversion formula in the class of Boehmians. tr_TR
dc.language.iso eng tr_TR
dc.publisher John Wiley and Sons LTD. tr_TR
dc.relation.isversionof 10.1002/mma.6181 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Boehmian tr_TR
dc.subject Polynomials tr_TR
dc.subject Quadratic-Phase Integral tr_TR
dc.subject Special Affine Fourier Integral tr_TR
dc.title A Quadratic-Phase Integral Operator for Sets of Generalized Integrable Functions tr_TR
dc.type article tr_TR
dc.relation.journal Mathematical Methods in the Applied Sciences tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 43 tr_TR
dc.identifier.issue 7 tr_TR
dc.identifier.startpage 4168 tr_TR
dc.identifier.endpage 4176 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record