dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Mustafa, Octavian G.
|
|
dc.contributor.author |
O'Regan, Donal
|
|
dc.date.accessioned |
2020-05-02T15:42:07Z |
|
dc.date.available |
2020-05-02T15:42:07Z |
|
dc.date.issued |
2015-05-15 |
|
dc.identifier.citation |
Baleanu, Dumitru; Mustafa, Octavian G.; O'Regan, Donal, "A Kamenev-Type Oscillation Result For a Linear (1+Alpha)-Order Fractional Differential Equation", Applied Mathematics and Computation, 259, pp. 374-378, (2015). |
tr_TR |
dc.identifier.issn |
0096-3003 |
|
dc.identifier.issn |
1873-5649 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3588 |
|
dc.description.abstract |
We investigate the eventual sign changing for the solutions of the linear equation (x((alpha)))' + q(t)x = t >= 0, when the functional coefficient q satisfies the Kamenev-type restriction lim sup 1/t epsilon integral(t)(to) (t - s)epsilon q(s)ds = +infinity for some epsilon > 2; t(0) > 0. The operator x((alpha)) is the Caputo differential operator and alpha is an element of (0, 1). (C) 2015 Elsevier Inc. All rights reserved. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Elsevier Science |
tr_TR |
dc.relation.isversionof |
10.1016/j.amc.2015.02.045 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Fractional Differential Equation |
tr_TR |
dc.subject |
Oscillatory Solution |
tr_TR |
dc.subject |
Caputo Differential Operator |
tr_TR |
dc.subject |
Riccati Inequality |
tr_TR |
dc.subject |
Averaging of Coefficients |
tr_TR |
dc.title |
A Kamenev-Type Oscillation Result For a Linear (1+Alpha)-Order Fractional Differential Equation |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Applied Mathematics and Computation |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
259 |
tr_TR |
dc.identifier.startpage |
374 |
tr_TR |
dc.identifier.endpage |
378 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |