dc.contributor.author |
Zhao, Yang
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Cattani, Carlo
|
|
dc.contributor.author |
Cheng, De-Fu
|
|
dc.contributor.author |
Yang, Xiao-Jun
|
|
dc.date.accessioned |
2020-05-02T15:43:26Z |
|
dc.date.available |
2020-05-02T15:43:26Z |
|
dc.date.issued |
2013 |
|
dc.identifier.issn |
1687-7357 |
|
dc.identifier.issn |
1687-7365 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3597 |
|
dc.description.abstract |
Maxwell's equations on Cantor sets are derived from the local fractional vector calculus. It is shown that Maxwell's equations on Cantor sets in a fractal bounded domain give efficiency and accuracy for describing the fractal electric and magnetic fields. Local fractional differential forms of Maxwell's equations on Cantor sets in the Cantorian and Cantor-type cylindrical coordinates are obtained. Maxwell's equations on Cantor set with local fractional operators are the first step towards a unified theory of Maxwell's equations for the dynamics of cold dark matter. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Hindawi LTD |
tr_TR |
dc.relation.isversionof |
10.1155/2013/686371 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Fractal Space-Time |
tr_TR |
dc.title |
Maxwell's Equations on Cantor Sets: A Local Fractional Approach |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Advances in High Energy Physics |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |