dc.contributor.author |
Golmankhaneh, Alireza K.
|
|
dc.contributor.author |
Golmankhaneh, Ali
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2020-05-03T20:55:21Z |
|
dc.date.available |
2020-05-03T20:55:21Z |
|
dc.date.issued |
2013-06 |
|
dc.identifier.issn |
1895-1082 |
|
dc.identifier.issn |
1644-3608 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3610 |
|
dc.description.abstract |
In this paper we have generalized -calculus for fractals embedding in a"e(3). -calculus is a fractional local derivative on fractals. It is an algorithm which may be used for computer programs and is more applicable than using measure theory. In this Calculus staircase functions for fractals has important role. -fractional differential form is introduced such that it can help us to derive the physical equation. Furthermore, using the -fractional differential form of Maxwell's equations on fractals has been suggested. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
De Gruyter Poland SP Zoo |
tr_TR |
dc.relation.isversionof |
10.2478/s11534-013-0192-6 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Fractal Integral |
tr_TR |
dc.subject |
Fractal Derivative |
tr_TR |
dc.subject |
Fractal Differential Equations |
tr_TR |
dc.subject |
Fractional Maxwell Equation |
tr_TR |
dc.title |
About Maxwell's Equations On Fractal Subsets of R-3 |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Central European Journal of Physics |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
11 |
tr_TR |
dc.identifier.issue |
6 |
tr_TR |
dc.identifier.startpage |
863 |
tr_TR |
dc.identifier.endpage |
867 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |