Özet:
In this paper a shape matching algorithm for multiple component objects has been proposed which aims at matching shapes by a two-stage method. The first stage extracts the similarity features of each component using a generic shape representation model. The first stage of our shape matching method normalizes the components for orientation and scaling, and neglects minor deformations. In the second stage, the extracted similarity features of the components are combined with their relative spatial characteristics for shape matching. Some important application areas for the proposed multi-component shape matching are medical image registration, content based medical image retrieval systems, and matching articulated objects which rely on the a-priori information of the model being searched. In these applications, salient features such as vertebrae or rib cage bones can be easily segmented and used. These features however, show differences from person to person on one hand and similarities at different cross-sectional images of the same examination on the other hand. The proposed method has been tested on articulated objects, and reliable registration of 3-dimensional abdominal computed tomography images.