dc.contributor.author |
Abdeljawad, Thabet
|
|
dc.contributor.author |
Jarad, Fahd
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2020-05-06T06:40:44Z |
|
dc.date.available |
2020-05-06T06:40:44Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
Abdeljawad, T.; Jarad, F.; Baleanu, D., "A Semigroup-Like Property for Discrete Mittag-Leffler Functions", Advances in Difference Equations, Vol. 2012, (2012). |
tr_TR |
dc.identifier.issn |
16871839 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3628 |
|
dc.description.abstract |
Discrete Mittag-Leffler function E.ᾱ (λ, z) of order 0 <α ≤ 1, E.1̄(λ, z) = (1 - λ)-z, l ≠ 1, satisfies the nabla Caputo fractional linear difference equation C∇0α x(t) = λx(t), x(0) = 1, t ∈ ℕ1 = {1, 2, 3,.. .}. Computations can show that the semigroup identity E.ᾱ (λ, z1)E. ᾱ (λ, z2) = E.ᾱ (λ, z1 + z2) does not hold unless λ = 0 or α = 1. In this article we develop a semigroup property for the discrete Mittag-Leffler function E.ᾱ (λ, z) in the case α ↑ 1 is just the above identity. The obtained semigroup identity will be useful to develop an operator theory for the discrete fractional Cauchy problem with order α ∈ (0, 1). |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.1186/1687-1847-2012-72 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Discrete Mittag-Leffler Function |
tr_TR |
dc.subject |
Discrete Nabla Laplace Transform |
tr_TR |
dc.subject |
Caputo Fractional Derivative |
tr_TR |
dc.subject |
Convolution |
tr_TR |
dc.title |
A Semigroup-Like Property for Discrete Mittag-Leffler Functions |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Advances in Difference Equations |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
2012 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |