Özet:
This paper proposes an efficient numerical integration process for the generalized Fokker-Planck equation with variable coefficients. For spatial discretization the Jacobi-Gauss-Lobatto collocation (J-GL-C) method is implemented in which the Jacobi-Gauss-Lobatto points are used as collocation nodes for spatial derivatives. This approach has the advantage of obtaining the solution in terms of the Jacobi parameters α and β . Using the above technique, the problem is reduced to the solution of a system of ordinary differential equations in time. This system can be also solved by standard numerical techniques. Our results demonstrate that the proposed method is a powerful algorithm for solving nonlinear partial differential equations.