dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Mustafa, Octavian G.
|
|
dc.contributor.author |
Agarwal, Ravi P.
|
|
dc.date.accessioned |
2020-05-16T14:03:10Z |
|
dc.date.available |
2020-05-16T14:03:10Z |
|
dc.date.issued |
2011-08 |
|
dc.identifier.citation |
Bleanu, D.; Mustafa, O.G.; Agarwal, R.P.,"Asymptotic Integration of (1 + Α) -Order Fractional Differential Equations",Vol. 62, No. 3, pp. 1492-1500, (2011). |
tr_TR |
dc.identifier.issn |
08981221 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3873 |
|
dc.description.abstract |
We establish the long-time asymptotic formula of solutions to the (1+α)-order fractional differential equation 0iOt1+αx+a(t)x=0, t>0, under some simple restrictions on the functional coefficient a(t), where 0iOt1+α is one of the fractional differential operators 0Dtα(x′), (0Dtαx)′= 0Dt1+αx and 0Dtα(tx′-x). Here, 0Dtα designates the Riemann-Liouville derivative of order α∈(0,1). The asymptotic formula reads as [b+O(1)] ·xsmall+c·xlarge as t→+∞ for given b, c∈R, where xsmall and xlarge represent the eventually small and eventually large solutions that generate the solution space of the fractional differential equation 0iOt1+αx=0, t>0 |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.1016/j.camwa.2011.03.021 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Linear Fractional Differential Equation |
tr_TR |
dc.subject |
Asymptotic Integration |
tr_TR |
dc.title |
Asymptotic Integration of (1 + Α) -Order Fractional Differential Equations |
tr_TR |
dc.type |
article |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
62 |
tr_TR |
dc.identifier.issue |
3 |
tr_TR |
dc.identifier.startpage |
1492 |
tr_TR |
dc.identifier.endpage |
1500 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |