dc.contributor.author |
Khalili Golmankhaneh, Ali
|
|
dc.contributor.author |
Ashrafi, Saleh
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Fernandez, Arran
|
|
dc.date.accessioned |
2020-05-17T12:27:34Z |
|
dc.date.available |
2020-05-17T12:27:34Z |
|
dc.date.issued |
2020-01-11 |
|
dc.identifier.citation |
Khalili Golmankhaneh, A.; Ashrafi, S.; Baleanu, D.; Fernandez, A.,"Brownian Motion On Cantor Sets",International Journal of Nonlinear Sciences and Numerical Simulation, (2020). |
tr_TR |
dc.identifier.issn |
15651339 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3885 |
|
dc.description.abstract |
In this paper, we have investigated the Langevin and Brownian equations on fractal time sets using F α-calculus and shown that the mean square displacement is not varied linearly with time. We have also generalized the classical method of deriving the Fokker-Planck equation in order to obtain the Fokker-Planck equation on fractal time sets. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.1515/ijnsns-2018-0384 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Brownian Equation |
tr_TR |
dc.subject |
Fokker-Planck Equation |
tr_TR |
dc.subject |
FA-Calculus |
tr_TR |
dc.subject |
Langevin Equation |
tr_TR |
dc.title |
Brownian Motion On Cantor Sets |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
International Journal of Nonlinear Sciences and Numerical Simulation |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |