dc.contributor.author |
Mishra, Aditya Mani
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Tchier, Fairouz
|
|
dc.contributor.author |
Purohit, Sunil Dutt
|
|
dc.date.accessioned |
2020-05-17T13:33:22Z |
|
dc.date.available |
2020-05-17T13:33:22Z |
|
dc.date.issued |
2020-10-01 |
|
dc.identifier.citation |
Mishra, A.M...et al. (2019). "Certain Results Comprising the Weighted Chebyshev Function Using Pathway Fractional Integrals",Mathematics, Vol. 7, No. 10. |
tr_TR |
dc.identifier.issn |
22277390 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3889 |
|
dc.description.abstract |
An analogous version of Chebyshev inequality, associated with the weighted function, has been established using the pathway fractional integral operators. The result is a generalization of the Chebyshev inequality in fractional integral operators. We deduce the left sided Riemann Liouville version and the Laplace version of the same identity. Our main deduction will provide noted results for an appropriate change to the Pathway fractional integral parameter and the degree of the fractional operator. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
MDPI AG |
tr_TR |
dc.relation.isversionof |
10.3390/math7100896 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Pathway Fractional Order Integral Operatör |
tr_TR |
dc.subject |
Chebyshev Functional |
tr_TR |
dc.subject |
Riemann Liouville Fractional Integral Operator |
tr_TR |
dc.title |
Certain Results Comprising the Weighted Chebyshev Function Using Pathway Fractional Integrals |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Mathematics |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
7 |
tr_TR |
dc.identifier.issue |
10 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |