Abstract:
A discontinuous media can be described by fractal dimensions. Fractal objects has special geometric properties, which are discrete and discontinuous structure. A fractal-time diffusion equation is a model for subdiffusive. In this work, we have generalized the Hamiltonian and Lagrangian dynamics on fractal using the fractional local derivative, so one can use as a new mathematical model for the motion in the fractal media. More, Poisson bracket on fractal subset of real line is suggested.