dc.contributor.author |
Golmankhaneh, Alireza K.
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2020-05-20T13:07:51Z |
|
dc.date.available |
2020-05-20T13:07:51Z |
|
dc.date.issued |
2013-11 |
|
dc.identifier.citation |
Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line
By:Golmankhaneh, AK (Golmankhaneh, Alireza Khalili)[ 1 ] ; Golmankhaneh, AK (Golmankhaneh, Ali Khalili)[ 1 ] ; Baleanu, D (Baleanu, Dumitru)[ 4,2,3 ] |
tr_TR |
dc.identifier.issn |
0020-7748 |
|
dc.identifier.issn |
1572-9575 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3966 |
|
dc.description.abstract |
A discontinuous media can be described by fractal dimensions. Fractal objects has special geometric properties, which are discrete and discontinuous structure. A fractal-time diffusion equation is a model for subdiffusive. In this work, we have generalized the Hamiltonian and Lagrangian dynamics on fractal using the fractional local derivative, so one can use as a new mathematical model for the motion in the fractal media. More, Poisson bracket on fractal subset of real line is suggested. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.1007/s10773-013-1733-x |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Fractal calculus |
tr_TR |
dc.subject |
Lagrangian mechanics |
tr_TR |
dc.subject |
Hamiltonian mechanics |
tr_TR |
dc.subject |
Poisson bracket |
tr_TR |
dc.subject |
Variational calculus |
tr_TR |
dc.subject |
EQUATIONS |
tr_TR |
dc.subject |
CALCULUS |
tr_TR |
dc.title |
Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS |
tr_TR |
dc.identifier.volume |
Volume: 52 |
tr_TR |
dc.identifier.issue |
Issue: 11 |
tr_TR |
dc.identifier.startpage |
4210 |
tr_TR |
dc.identifier.endpage |
4217 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |