DSpace Repository

Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line

Show simple item record

dc.contributor.author Golmankhaneh, Alireza K.
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2020-05-20T13:07:51Z
dc.date.available 2020-05-20T13:07:51Z
dc.date.issued 2013-11
dc.identifier.citation Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line By:Golmankhaneh, AK (Golmankhaneh, Alireza Khalili)[ 1 ] ; Golmankhaneh, AK (Golmankhaneh, Ali Khalili)[ 1 ] ; Baleanu, D (Baleanu, Dumitru)[ 4,2,3 ] tr_TR
dc.identifier.issn 0020-7748
dc.identifier.issn 1572-9575
dc.identifier.uri http://hdl.handle.net/20.500.12416/3966
dc.description.abstract A discontinuous media can be described by fractal dimensions. Fractal objects has special geometric properties, which are discrete and discontinuous structure. A fractal-time diffusion equation is a model for subdiffusive. In this work, we have generalized the Hamiltonian and Lagrangian dynamics on fractal using the fractional local derivative, so one can use as a new mathematical model for the motion in the fractal media. More, Poisson bracket on fractal subset of real line is suggested. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1007/s10773-013-1733-x tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Fractal calculus tr_TR
dc.subject Lagrangian mechanics tr_TR
dc.subject Hamiltonian mechanics tr_TR
dc.subject Poisson bracket tr_TR
dc.subject Variational calculus tr_TR
dc.subject EQUATIONS tr_TR
dc.subject CALCULUS tr_TR
dc.title Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line tr_TR
dc.type article tr_TR
dc.relation.journal INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS tr_TR
dc.identifier.volume Volume: 52 tr_TR
dc.identifier.issue Issue: 11 tr_TR
dc.identifier.startpage 4210 tr_TR
dc.identifier.endpage 4217 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record