Abstract:
The main purpose of this paper is to provide an efficient numerical approach for the fractional differential equations (FDEs) on the half line with constant coefficients using a generalized Laguerre tau (GLT) method. The fractional derivatives are described in the Caputo sense. We state and prove a new formula expressing explicitly the derivatives of generalized Laguerre polynomials of any degree and for any fractional order in terms of generalized Laguerre polynomials themselves. We develop also a direct solution technique for solving the linear multi-order FDEs with constant coefficients using a spectral tau method. The spatial approximation with its fractional-order derivatives described in the Caputo sense are based on generalized Laguerre polynomials L-i((alpha))(x) with x is an element of Lambda = (0,infinity) and i denoting the polynomial degree.