dc.contributor.author |
Abdeljawad, Thabet
|
|
dc.contributor.author |
Yurdakul, M.
|
|
dc.date.accessioned |
2021-12-14T10:39:21Z |
|
dc.date.available |
2021-12-14T10:39:21Z |
|
dc.date.issued |
2004-04 |
|
dc.identifier.citation |
Abdeljawad, Thabet; Yurdakul, M. (2004). "The property of smallness up to a complemented Banach subspace", Publicationes Mathematicae-Debrecen, Vol. 64, No. 3-4, pp. 415-425. |
tr_TR |
dc.identifier.issn |
0033-3883 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/4964 |
|
dc.description.abstract |
This article investigates locally convex spaces which satisfy the property of smallness up to a complemented Banach subspace, the SCBS property, which was introduced by Djakov, Terzioglu, Yurdakul and Zahariuta. It is proved that a bounded perturbation of an automorphism on a complete barrelled locally convex, space with the SCBS is stable up to a Banach subspace. New examples are given, and the relation of the SCBS with the quasinormability is analyzed. It is proved that the Frechet space l(p+) does not satisfy the SCBS, therefore this property is not inherited by subspaces or separated quotients. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
The SCBS Property |
tr_TR |
dc.subject |
The Conditions (QN) |
tr_TR |
dc.subject |
(AN) |
tr_TR |
dc.subject |
l-Kothe |
tr_TR |
dc.subject |
Spaces |
tr_TR |
dc.subject |
The Space l(p)+ |
tr_TR |
dc.subject |
Bounded Factorization Property |
tr_TR |
dc.subject |
Douady's Lemma |
tr_TR |
dc.subject |
Complemented Banach Subspaces |
tr_TR |
dc.title |
The property of smallness up to a complemented Banach subspace |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Publicationes Mathematicae-Debrecen |
tr_TR |
dc.identifier.volume |
64 |
tr_TR |
dc.identifier.issue |
3-4 |
tr_TR |
dc.identifier.startpage |
415 |
tr_TR |
dc.identifier.endpage |
425 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |