DSpace Repository

A class of fractal Hilbert-type inequalities obtained via Cantor-type spherical coordinates

Show simple item record

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Krnic, Mario
dc.contributor.author Vukovic, Predrag
dc.date.accessioned 2022-02-11T11:51:30Z
dc.date.available 2022-02-11T11:51:30Z
dc.date.issued 2021-05-15
dc.identifier.citation Baleanu, Dumitru; Krnic, Mario; Vukovic, Predrag (2021). "A class of fractal Hilbert-type inequalities obtained via Cantor-type spherical coordinates", Mathematical Methods in the Applied Sciences, Vol. 44, No. 7, pp. 6195-6208. tr_TR
dc.identifier.issn 0170-4214
dc.identifier.uri http://hdl.handle.net/20.500.12416/5005
dc.description.abstract We present a class of higher dimensional Hilbert-type inequalities on a fractal set (Double-struck capital R+alpha n)k. The crucial step in establishing our results are higher dimensional spherical coordinates on a fractal space. Further, we impose the corresponding conditions under which the constants appearing in the established Hilbert-type inequalities are the best possible. As an application, our results are compared with the previous results known from the literature. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1002/mma.7180 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Cantor tr_TR
dc.subject Type Spherical Coordinates tr_TR
dc.subject Fractal Set tr_TR
dc.subject Local Fractional Integral tr_TR
dc.subject The Best Possible Constant tr_TR
dc.subject The Hilbert Inequality tr_TR
dc.title A class of fractal Hilbert-type inequalities obtained via Cantor-type spherical coordinates tr_TR
dc.type article tr_TR
dc.relation.journal Mathematical Methods in the Applied Sciences tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 44 tr_TR
dc.identifier.issue 7 tr_TR
dc.identifier.startpage 6195 tr_TR
dc.identifier.endpage 6208 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record