Özet:
The aim of this research is to propose a new fractional Euler-Lagrange equation for a harmonic oscillator. The theoretical analysis is given in order to derive the equation of motion in a fractional framework. The new equation has a complicated structure involving the left and right fractional derivatives of Caputo-Fabrizio type, so a new numerical method is developed in order to solve the above-mentioned equation effectively. As a result, we can see different asymptotic behaviors according to the flexibility provided by the use of the fractional calculus approach, a fact which may be invisible when we use the classical Lagrangian technique. This capability helps us to better understand the complex dynamics associated with natural phenomena.