dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2022-03-09T12:32:23Z |
|
dc.date.available |
2022-03-09T12:32:23Z |
|
dc.date.issued |
2009-06 |
|
dc.identifier.citation |
Baleanu, Dumitru (2009). "About fractional quantization and fractional variational principles", Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 6, pp. 2520-2523. |
tr_TR |
dc.identifier.issn |
1007-5704 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/5096 |
|
dc.description.abstract |
in this paper, a new method of finding the fractional Euler-Lagrange equations within Caputo derivative is proposed by making use of the fractional generalization of the classical Fad di Bruno formula. The fractional Euler-Lagrange and the fractional Hamilton equations are obtained within the 1 + 1 field formalism. One illustrative example is analyzed. (C) 2008 Elsevier B.V. All rights reserved. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.1016/j.cnsns.2008.10.002 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Fractional Variational Principles |
tr_TR |
dc.subject |
Fractional Systems |
tr_TR |
dc.subject |
Infinite-Dimensional Systems |
tr_TR |
dc.subject |
Hamiltonian Systems |
tr_TR |
dc.title |
About fractional quantization and fractional variational principles |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Communications in Nonlinear Science and Numerical Simulation |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
14 |
tr_TR |
dc.identifier.issue |
6 |
tr_TR |
dc.identifier.startpage |
2520 |
tr_TR |
dc.identifier.endpage |
2523 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |