Abstract:
In this article, we use some fixed point theorems to discuss the existence and uniqueness of solutions to a coupled system of a nonlinear Langevin differential equation which involves Caputo fractional derivatives of different orders and is governed by new type of nonlocal and nonseparated boundary conditions consisting of fractional integrals and derivatives. The considered boundary conditions are totally dissimilar than the ones already handled in the literature. Additionally, we modify the Adams-type predictor-corrector method by implicitly implementing the Gauss-Seidel method in order to solve some specific particular cases of the system.