Abstract:
In this paper, we derive and prove a maximum principle for a linear fractional differential equation with non-local fractional derivative. The proof is based on an estimate of the non-local derivative of a function at its extreme points. A priori norm estimate and a uniqueness result are obtained for a linear fractional boundary value problem, as well as a uniqueness result for a nonlinear fractional boundary value problem. Several comparison principles are also obtained for linear and nonlinear equations.