DSpace Repository

General Raina fractional integral inequalities on coordinates of convex functions

Show simple item record

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Kashuri, Artion
dc.contributor.author Mohammed, Pshtiwan Othman
dc.contributor.author Meftah, Badreddine
dc.date.accessioned 2022-05-11T10:52:56Z
dc.date.available 2022-05-11T10:52:56Z
dc.date.issued 2021-12
dc.identifier.citation Baleanu, Dumitru...et al. (2021). "General Raina fractional integral inequalities on coordinates of convex functions", Advances in Difference Equation, Vol. 2021, No. 1. tr_TR
dc.identifier.issn 1687-1839
dc.identifier.uri http://hdl.handle.net/20.500.12416/5497
dc.description.abstract Integral inequality is an interesting mathematical model due to its wide and significant applications in mathematical analysis and fractional calculus. In this study, authors have established some generalized Raina fractional integral inequalities using an (l1, h1) -(l2, h2) -convex function on coordinates. Also, we obtain an integral identity for partial differentiable functions. As an effect of this result, two interesting integral inequalities for the (l1, h1) -(l2, h2) -convex function on coordinates are given. Finally, we can say that our findings recapture some recent results as special cases. © 2021, The Author(s). tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1186/s13662-021-03241-y tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Coordinated Convex Function tr_TR
dc.subject Hermite–Hadamard Inequality tr_TR
dc.subject Raina Fractional Integral Operators tr_TR
dc.title General Raina fractional integral inequalities on coordinates of convex functions tr_TR
dc.type article tr_TR
dc.relation.journal Advances in Difference Equations tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 2021 tr_TR
dc.identifier.issue 1 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record