Özet:
Using hand gestures in human computer interaction has been a major challenge during the recent years. Many of the hand gesture recognition systems however, have been based on the recognition of hand postures and estimating the related gesture which is restricted to a few numbers of possible movements. However when dealing with applications such as understanding sign languages which include a large number of classes, an automatic learning method based on matching a sequence of postures with the characterizing feature sequence of each class is necessary. An important characteristic of this method is that each sample sequence of a class may have a variable length and different position of the key features. In this paper a syntactic method has been proposed for classifying the input sequences. An algorithm foe extracting the grammar of the method during training stage is also given.