DSpace Repository

Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on cantor sets

Show simple item record

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Srivastava, Hari M.
dc.contributor.author Yang, Xiao-Jun
dc.date.accessioned 2022-06-15T11:29:50Z
dc.date.available 2022-06-15T11:29:50Z
dc.date.issued 2015-01-01
dc.identifier.citation Baleanu, Dumitru; Srivastava, Hari M.; Yang, Xiao-Jun (2015). "Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on cantor sets", Progress in Fractional Differentiation and Applications, Vol. 1, No. 1, pp. 1-10. tr_TR
dc.identifier.issn 2356-9336
dc.identifier.uri http://hdl.handle.net/20.500.12416/5614
dc.description.abstract In this article, we apply the local fractional variational iteration algorithms for solving the parabolic Fokker-Planck equation which is defined on Cantor sets. It is shown by comparing with the three LFVIAs that the LFVIA-II is the easiest to obtain the nondifferentiable solutions for linear local fractional partial differential equations. Several other related recent works dealing with local fractional derivative operators on Cantor sets are also indicated. © 2015 NSP. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.12785/pfda/010101 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Approximate Solution tr_TR
dc.subject Cantor Sets tr_TR
dc.subject Local Fractional Derivative Operators tr_TR
dc.subject Parabolic Fokker-Planck Equation tr_TR
dc.title Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on cantor sets tr_TR
dc.type article tr_TR
dc.relation.journal Progress in Fractional Differentiation and Applications tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 1 tr_TR
dc.identifier.issue 1 tr_TR
dc.identifier.startpage 1 tr_TR
dc.identifier.endpage 10 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record