Abstract:
There are a lot of physical phenomena which their mathematical models are decided by nonlinear evolution (NLE) equations. Our concern in the present work is to study a special type of NLE equations called the (3 + 1)-dimensional generalized breaking soliton (3D-GBS) equation. To this end, the linear superposition (LS) method along with a series of specific techniques are utilized and as an achievement, multiwave, multicomplexiton, and positive multicomplexiton solutions to the 3D-GBS equation are formally constructed. The study confirms the efficiency of the methods in handling a wide variety of nonlinear evolution equations. © 2020 Faculty of Engineering, Alexandria University