DSpace@Çankaya

On a new measure on fractals

Basit öğe kaydını göster

dc.contributor.author Golmankhaneh, Alireza K.
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2022-10-06T12:09:21Z
dc.date.available 2022-10-06T12:09:21Z
dc.date.issued 2013-11
dc.identifier.citation Golmankhaneh, Alireza K.; Baleanu, Dumitru (2013). "On a new measure on fractals", Journal of Inequalities and Applications, Vol. 2013. tr_TR
dc.identifier.issn 1029-242X
dc.identifier.uri http://hdl.handle.net/20.500.12416/5802
dc.description.abstract Fractals are sets whose Hausdorff dimension strictly exceeds their topological dimension. The algorithmic Riemannian-like method, Fα-calculus, has been suggested very recently. Henstock-Kurzweil integral is the generalized Riemann integral method by using the gauge function. In this paper we generalize the Fα-calculus as a fractional local calculus that is more suitable to describe some physical process. We introduce the new measure using the gauge function on fractal sets that gives a finer dimension in comparison with the Hausdorff and box dimension. Hilbert Fα-spaces are defined. We suggest the self-adjoint Fα-differential operator so that it can be applied in the fractal quantum mechanics and on the fractal curves. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1186/1029-242X-2013-522 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Fractal Calculus tr_TR
dc.subject Fractal Curve tr_TR
dc.subject Fractal Measure tr_TR
dc.title On a new measure on fractals tr_TR
dc.type article tr_TR
dc.relation.journal Journal of Inequalities and Applications tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 2013 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster