dc.contributor.author |
Nguyen, Anh Tuan
|
|
dc.contributor.author |
Hammouch, Zakia
|
|
dc.contributor.author |
Karapınar, Erdal
|
|
dc.contributor.author |
Tuan, Nguyen Huy
|
|
dc.date.accessioned |
2022-10-06T12:09:41Z |
|
dc.date.available |
2022-10-06T12:09:41Z |
|
dc.date.issued |
2021-12 |
|
dc.identifier.citation |
Nguyen, Anh Tuan...et al. (2021). "On a nonlocal problem for a Caputo time-fractional pseudoparabolic equation", Mathematical Methods in the Applied Sciences, Vol. 44, No. 18, pp. 14791-14806. |
tr_TR |
dc.identifier.issn |
0170-4214 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/5807 |
|
dc.description.abstract |
In this paper, we consider a class of pseudoparabolic equations with the nonlocal condition and the Caputo derivative. Two cases of problems (1–2) will be studied, which are linear case and nonlinear case. For the first case, we establish the existence, the uniqueness, and some regularity results by using some estimates technique and Sobolev embeddings. Second, the Banach fixed-point theorem will be applied to the nonlinear case to prove the existence and the uniqueness of the mild solution. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.1002/mma.7743 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Caputo Fractional |
tr_TR |
dc.subject |
Fractional Derivative |
tr_TR |
dc.subject |
Nonlocal Condition |
tr_TR |
dc.subject |
Pseudoparabolic |
tr_TR |
dc.subject |
Semilinear Equation |
tr_TR |
dc.title |
On a nonlocal problem for a Caputo time-fractional pseudoparabolic equation |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Mathematical Methods in the Applied Sciences |
tr_TR |
dc.contributor.authorID |
19184 |
tr_TR |
dc.identifier.volume |
44 |
tr_TR |
dc.identifier.issue |
18 |
tr_TR |
dc.identifier.startpage |
14791 |
tr_TR |
dc.identifier.endpage |
14806 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |