DSpace Repository

On fractional derivatives with generalized Mittag-Leffler kernels

Show simple item record

dc.contributor.author Abdeljawad, Thabet
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2022-10-11T11:47:24Z
dc.date.available 2022-10-11T11:47:24Z
dc.date.issued 2018-12-01
dc.identifier.citation Abdeljawad, Thabet; Baleanu, Dumitru (2018). "On fractional derivatives with generalized Mittag-Leffler kernels", Advances in Difference Equations", Vol. 2018, No. 1. tr_TR
dc.identifier.issn 1687-1839
dc.identifier.uri http://hdl.handle.net/20.500.12416/5827
dc.description.abstract Fractional derivatives with three parameter generalized Mittag-Leffler kernels and their properties are studied. The corresponding integral operators are obtained with the help of Laplace transforms. The action of the presented fractional integrals on the Caputo and Riemann type derivatives with three parameter Mittag-Leffler kernels is analyzed. Integration by parts formulas in the sense of Riemann and Caputo are proved and then used to formulate the fractional Euler–Lagrange equations with an illustrative example. Certain nonconstant functions whose fractional derivatives are zero are determined as well. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1186/s13662-018-1914-2 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Euler–Lagrange Equation tr_TR
dc.subject Fractional Derivatives With Generalized Mittag-Leffler Kernels tr_TR
dc.subject Generalized Mittag-Leffler Function tr_TR
dc.subject Integration By Parts tr_TR
dc.subject Laplace Transform Convolution tr_TR
dc.title On fractional derivatives with generalized Mittag-Leffler kernels tr_TR
dc.type article tr_TR
dc.relation.journal Advances in Difference Equations tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 2018 tr_TR
dc.identifier.issue 1 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record