dc.contributor.author |
Tchier, Fairouz
|
|
dc.contributor.author |
Inan, Ibrahim E.
|
|
dc.contributor.author |
Ugurlu, Yavuz
|
|
dc.contributor.author |
İnç, Mustafa
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2022-11-10T10:47:46Z |
|
dc.date.available |
2022-11-10T10:47:46Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
Tchier, Fairouz...et al. (2016). "On new traveling wave solutions of potential KdV and (3+1)-dimensional burgers equations", Journal of Nonlinear Science and Applications, Vol. 9, No. 7, pp. 5029-5040. |
tr_TR |
dc.identifier.issn |
2008-1898 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/5843 |
|
dc.description.abstract |
This paper acquires soliton solutions of the potential KdV (PKdV) equation and the (3+1)-dimensional Burgers equation (BE) by the two variables (formula presented) expansion method (EM). Obtained soliton solutions are designated in terms of kink, bell-shaped solitary wave, periodic and singular periodic wave solutions. These solutions may be useful and desirable to explain some nonlinear physical phenomena. © 2016. All rights reserved. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.22436/jnsa.009.07.07 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
(Formula Presented)-EM |
tr_TR |
dc.subject |
Hyperbolic Solution |
tr_TR |
dc.subject |
Periodic Solution |
tr_TR |
dc.subject |
Rational Solution |
tr_TR |
dc.subject |
The (3+1)-Dimensional BE |
tr_TR |
dc.subject |
The Pkdv Equation |
tr_TR |
dc.title |
On new traveling wave solutions of potential KdV and (3+1)-dimensional burgers equations |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Journal of Nonlinear Science and Applications |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
9 |
tr_TR |
dc.identifier.issue |
7 |
tr_TR |
dc.identifier.startpage |
5029 |
tr_TR |
dc.identifier.endpage |
5040 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |