DSpace Repository

On the non-commutative neutrix product of the distributions x(+)(-r) ln(p) x(+) and x(+)(mu)ln(q) x(+)

Show simple item record

dc.contributor.author Fisher, Brian
dc.contributor.author Taş, Kenan
dc.date.accessioned 2022-11-25T12:57:04Z
dc.date.available 2022-11-25T12:57:04Z
dc.date.issued 2006-07
dc.identifier.citation Fisher, Brian; Taş, Kenan (2006). "On the non-commutative neutrix product of the distributions x(+)(-r) ln(p) x(+) and x(+)(mu)ln(q) x(+)", INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, Vol. 17, No. 7, pp. 513-519. tr_TR
dc.identifier.issn 1065-2469
dc.identifier.issn 1476-8291
dc.identifier.uri http://hdl.handle.net/20.500.12416/5875
dc.description.abstract <p>Let f and g be distributions and g(n) = (g*delta(n))(x), where delta(n)(x ) is a certain sequence converging to the Dirac delta-function. The non-commutative neutrix product f o g of f and g is defined to be the neutrix limit of the sequence {fg(n) }, provided its limit h exists in the sense thatp><p>[GRAPHICS]p><p>for all functions phi in D. It is proved thatp><p>(x(+)(-r) ln(p) x(+)) o (x(+)(mu) ln(q) x(+)) = x(+)(-r+mu) ln(p+q) x(+) (x(-)(-r) ln(p) (x)-) o (x(-)(mu) ln(q) x(-)) = x(-)(-r+mu) ln(p+q) x(-)p><p>for mu < r - 1;mu not equal 0, +/- 1, +/- 2,..., r = 1,2,..., and p, q = 0, 1, 2,....p> tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1080/10652460600725283 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Distribution tr_TR
dc.subject Delta-Function tr_TR
dc.subject Product of Distributions tr_TR
dc.title On the non-commutative neutrix product of the distributions x(+)(-r) ln(p) x(+) and x(+)(mu)ln(q) x(+) tr_TR
dc.type article tr_TR
dc.relation.journal INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS tr_TR
dc.contributor.authorID 4971 tr_TR
dc.identifier.volume 17 tr_TR
dc.identifier.issue 7 tr_TR
dc.identifier.startpage 513 tr_TR
dc.identifier.endpage 519 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record