dc.contributor.author |
Fisher, Brian
|
|
dc.contributor.author |
Taş, Kenan
|
|
dc.date.accessioned |
2022-11-25T12:57:04Z |
|
dc.date.available |
2022-11-25T12:57:04Z |
|
dc.date.issued |
2006-07 |
|
dc.identifier.citation |
Fisher, Brian; Taş, Kenan (2006). "On the non-commutative neutrix product of the distributions x(+)(-r) ln(p) x(+) and x(+)(mu)ln(q) x(+)", INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, Vol. 17, No. 7, pp. 513-519. |
tr_TR |
dc.identifier.issn |
1065-2469 |
|
dc.identifier.issn |
1476-8291 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/5875 |
|
dc.description.abstract |
<p>Let f and g be distributions and g(n) = (g*delta(n))(x), where delta(n)(x ) is a certain sequence converging to the Dirac delta-function. The non-commutative neutrix product f o g of f and g is defined to be the neutrix limit of the sequence {fg(n) }, provided its limit h exists in the sense thatp><p>[GRAPHICS]p><p>for all functions phi in D. It is proved thatp><p>(x(+)(-r) ln(p) x(+)) o (x(+)(mu) ln(q) x(+)) = x(+)(-r+mu) ln(p+q) x(+) (x(-)(-r) ln(p) (x)-) o (x(-)(mu) ln(q) x(-)) = x(-)(-r+mu) ln(p+q) x(-)p><p>for mu < r - 1;mu not equal 0, +/- 1, +/- 2,..., r = 1,2,..., and p, q = 0, 1, 2,....p> |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.1080/10652460600725283 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Distribution |
tr_TR |
dc.subject |
Delta-Function |
tr_TR |
dc.subject |
Product of Distributions |
tr_TR |
dc.title |
On the non-commutative neutrix product of the distributions x(+)(-r) ln(p) x(+) and x(+)(mu)ln(q) x(+) |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS |
tr_TR |
dc.contributor.authorID |
4971 |
tr_TR |
dc.identifier.volume |
17 |
tr_TR |
dc.identifier.issue |
7 |
tr_TR |
dc.identifier.startpage |
513 |
tr_TR |
dc.identifier.endpage |
519 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |