DSpace Repository

Semilinear fractional evolution inclusion problem in the frame of a generalized Caputo operator

Show simple item record

dc.contributor.author Lachouri, Adel
dc.contributor.author Ardjouni, Abdelouaheb
dc.contributor.author Jarad, Fahd
dc.contributor.author Abdo, Mohammed S.
dc.date.accessioned 2022-12-16T12:02:50Z
dc.date.available 2022-12-16T12:02:50Z
dc.date.issued 2021
dc.identifier.citation Lachouri, Adel...at all (2021). "Semilinear fractional evolution inclusion problem in the frame of a generalized Caputo operator", Journal of Function Spaces, Vol. 2021. tr_TR
dc.identifier.issn 2314-8896
dc.identifier.uri http://hdl.handle.net/20.500.12416/5998
dc.description.abstract In this paper, we study the existence of solutions to initial value problems for a nonlinear generalized Caputo fractional differential inclusion with Lipschitz set-valued functions. The applied fractional operator is given by the kernel kðρ, sÞ = ξðρÞ - ξðsÞ and the derivative operator ð1/ξ′ðρÞÞðd/dρÞ. The existence result is obtained via fixed point theorems due to Covitz and Nadler. Moreover, we also characterize the topological properties of the set of solutions for such inclusions. The obtained results generalize previous works in the literature, where the classical Caputo fractional derivative is considered. In the end, an example demonstrating the effectiveness of the theoretical results is presented. Copyright tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1155/2021/8162890 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.title Semilinear fractional evolution inclusion problem in the frame of a generalized Caputo operator tr_TR
dc.type review tr_TR
dc.relation.journal Journal of Function Spaces tr_TR
dc.contributor.authorID 234808 tr_TR
dc.identifier.volume 2021 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record