Abstract:
The search for exact solutions of nonlinear evolution models with different wave structures has achieved significant attention in recent decades. The present paper studies a nonlinear (2+1)-dimensional evolution model describing the propagation of nonlinear waves in Heisenberg ferromagnetic spin chain system. The intended aim is carried out by considering a specific transformation and adopting a modified version of the Jacobi elliptic expansion method. As a result, a number of solitons and Jacobi elliptic function solutions to the Heisenberg ferromagnetic spin chain equation are formally derived. Several three-dimensional plots are presented to demonstrate the dynamical features of the bright and dark soliton solutions.