Abstract:
The nature of information literacy is changing as people incline more towards using digital media to consume content. Consequently, this easier way of consuming information has sparked off a challenge called “Fake News”. One of the risky effects of this notorious term is to influence people’s views of the world as in the recent example of coronavirus misinformation that is flooding the internet. Nowadays, it seems the world needs “information hygiene” more than anything. Yet real-world solutions in practice are not qualified to determine verifiability of the information circulating. Presenting an automated solution, our work provides an adaptable solution to detect fake news in practice. Our approach proposes a set of carefully selected features combined with word-embeddings to predict fake or valid texts. We evaluated our proposed model in terms of efficacy through intensive experimentation. Additionally, we present an analysis linked with linguistic features for detecting fake and valid news content. An overview of text-based fake news detection guidance derived from experiments including promising results of our work is also presented in this work.