Abstract:
In this research, we study the dynamical behaviors of a linear triatomic molecule. First, a classical Lagrangian approach is followed which produces the classical equations of motion. Next, the generalized form of the fractional Hamilton equations (FHEs) is formulated in the Caputo sense. A numerical scheme is introduced based on the Euler convolution quadrature rule in order to solve the derived FHEs accurately. For different fractional orders, the numerical simulations are analyzed and investigated. Simulation results indicate that the new aspects of real-world phenomena are better demonstrated by considering flexible models provided within the use of fractional calculus approaches.