DSpace@Çankaya

A novel fractional operator application for neural networks using proportional Caputo derivative

Basit öğe kaydını göster

dc.contributor.author Altan, Gökhan
dc.contributor.author Alkan, Sertan
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2023-11-22T11:58:01Z
dc.date.available 2023-11-22T11:58:01Z
dc.date.issued 2023-02
dc.identifier.citation Altan, Gökhan; Alkan, Sertan; Baleanu, Dumitru. (2023). "A novel fractional operator application for neural networks using proportional Caputo derivative", Neural Computing & Applications, Vol.35, No.4, pp. 3101-3114. tr_TR
dc.identifier.issn 0941-0643
dc.identifier.uri http://hdl.handle.net/20.500.12416/6572
dc.description.abstract In machine learning models, one of the most popular models is artificial neural networks. The activation function is one of the important parameters of neural networks. In this paper, the sigmoid function is used as an activation function with a fractional derivative approach to minimize the convergence error in backpropagation and to maximize the generalization performance of neural networks. The proportional Caputo definition is considered a fractional derivative. We evaluated three neural network models on the usage of the proportional Caputo derivative. The results show that the proportional Caputo derivative approach has higher classification accuracy than traditional derivative models in backpropagation for neural networks with and without L2 regularization. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1007/s00521-022-07728-x tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Proportional Caputo Derivative tr_TR
dc.subject Neural Networks tr_TR
dc.subject Activation Function tr_TR
dc.subject Fractional Order tr_TR
dc.title A novel fractional operator application for neural networks using proportional Caputo derivative tr_TR
dc.type article tr_TR
dc.relation.journal Neural Computing & Applications tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 35 tr_TR
dc.identifier.issue 4 tr_TR
dc.identifier.startpage 3101 tr_TR
dc.identifier.endpage 3114 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Bu öğenin dosyaları:

Dosyalar Boyut Biçim Göster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster