Abstract:
In this study, a series of experiments were carried out to investigate the variation of the critical submergence of air-entraining vortices with the related flow and geometric parameters at single and multiple horizontal intake structures. Three identical intake pipes were tested at a wide range of discharges with varying sidewall clearances under symmetrical and asymmetrical approach flow conditions. Experimental results indicated that increasing the number of intake structures in operation results in a more complicated flow pattern in front of the intake structures due to the mutual effects of the intakes on each other. Therefore, critical submergence values are higher for multiple intake structures than those of single water intake structures for a given Froude number. Dimensionless empirical equations were derived for each single, double and triple unit operation to calculate the critical submergence as a function of relevant flow and geometric parameters, and they were compared with the related equations available in the literature. These equations can be used to determine sufficient submergence to avoid air-entraining vortices at single and multiple horizontal intakes within the ranges of dimensionless parameters tested in this study.