dc.contributor.author |
Karapınar, Erdal
|
|
dc.contributor.author |
Benkhettou, Nadia
|
|
dc.contributor.author |
Lazreg, Jamal Eddine
|
|
dc.contributor.author |
Benchohra, Mouffak
|
|
dc.date.accessioned |
2023-12-18T08:09:46Z |
|
dc.date.available |
2023-12-18T08:09:46Z |
|
dc.date.issued |
2023 |
|
dc.identifier.citation |
Karapinar, Erdal...et.al. (2023). "Fractional differential equations with maxima on time scale via Picard operators", Filomat, Vol.37, vol.2, pp.393-402. |
tr_TR |
dc.identifier.issn |
0354-5180 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/6782 |
|
dc.description.abstract |
In this paper, we prove a result of existence and uniqueness of solutions for the following class of problem of initial value for differential equations with maxima and Caputo's fractional order on the time scales:c increment omega a u(& thetasym;) = zeta(& thetasym;, u(& thetasym;), max sigma E[a,& thetasym;] u(sigma)), & thetasym; E J : = [a,b]T, 0 < omega <1,u(a) = phi,We used the techniques of the Picard and weakly Picard operators to obtain some data dependency on the parameters results. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.2298/FIL2302393K |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Fractional Differential Equations |
tr_TR |
dc.subject |
Existence |
tr_TR |
dc.subject |
Time Scale |
tr_TR |
dc.subject |
Picard Operator |
tr_TR |
dc.subject |
Initial Value Problem |
tr_TR |
dc.subject |
Maxima |
tr_TR |
dc.subject |
Fixed Point |
tr_TR |
dc.subject |
Abstract Comparison Principle |
tr_TR |
dc.subject |
Data Dependance |
tr_TR |
dc.title |
Fractional differential equations with maxima on time scale via Picard operators |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Filomat |
tr_TR |
dc.contributor.authorID |
19184 |
tr_TR |
dc.identifier.volume |
37 |
tr_TR |
dc.identifier.issue |
2 |
tr_TR |
dc.identifier.startpage |
393 |
tr_TR |
dc.identifier.endpage |
402 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |