DSpace Repository

FEM-based optimal design and testing of synchronous magnetic coupling for aerospace Starter/Generator applications

Show simple item record

dc.contributor.author Arslan, Sami
dc.contributor.author İskender, İres
dc.contributor.author Navruz, Tugba Selcen
dc.date.accessioned 2023-12-18T08:21:51Z
dc.date.available 2023-12-18T08:21:51Z
dc.date.issued 2023-05
dc.identifier.citation Arslan, Sami; İskender, İres; Navruz, Tugba Selcen. (2023). "FEM-based optimal design and testing of synchronous magnetic coupling for aerospace Starter/Generator applications", Engineering Science And Technology-An International Journal-JESTECH, Vol.41. tr_TR
dc.identifier.issn 2215-0986
dc.identifier.uri http://hdl.handle.net/20.500.12416/6788
dc.description.abstract Improvements in high energy density rare-earth permanent magnets make it innovative to develop magnetic couplings for Starter/Generator applications in the light of more electric aircraft to ensure magnetically insulated contactless power transmission between decoupled shafts for safe operation. Although there are essential studies on magnetic couplings in the literature, especially those for aerospace Starter/Generator structures are rarely encountered. However, methodologies considering system constraints and examining design parameters of couplings are in demand. In response to such a need, this paper proposes the novel design of highly reliable synchronous radial magnetic couplings with torque requirements of 6 and 12 N.m to isolate Starter/Generator and piston engine shafts in model aircraft. The preliminary volume is obtained analytically. Simulations are executed by optimetric approaches in Ansys Maxwell 2D. Optimisation techniques are compared in Maxwell 3D to get the final shape. The retaining sleeve of 0.5 mm is suggested. Loss of synchronisation in the event of the piston shaft failure or exceeding the maximum torque of the coupling is also examined. The torque fluctuation at load changes is 0.1%. Performance tests are conducted on the direct dynamic test bench. Absolute error margin is 37% for the Virtual Work method, 13% for 2D FEM and 6% for 3D FEM. The coupling efficiency is 93.8% at the maximum operating speed and the critical angle, and 96.9% at the minimum torque angle and the minimum operating speed.( tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1016/j.jestch.2023.101403 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Contactless Power Transmission tr_TR
dc.subject Optimisation tr_TR
dc.subject Parametric Solution tr_TR
dc.subject Radial Magnetic Couplers tr_TR
dc.subject Synchronous Couplings tr_TR
dc.title FEM-based optimal design and testing of synchronous magnetic coupling for aerospace Starter/Generator applications tr_TR
dc.type article tr_TR
dc.relation.journal Engineering Science And Technology-An International Journal-JESTECH tr_TR
dc.contributor.authorID 133746 tr_TR
dc.identifier.volume 41 tr_TR
dc.contributor.department Çankaya Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record