DSpace@Çankaya

Modified Atangana-Baleanu fractional operators involving generalized Mittag-Leffler function

Basit öğe kaydını göster

dc.contributor.author Huang, Wen-Hua
dc.contributor.author Samraiz, Muhammad
dc.contributor.author Mehmood, Ahsan
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Rahman, Gauhar
dc.contributor.author Naheed, Saima
dc.date.accessioned 2024-01-12T11:48:56Z
dc.date.available 2024-01-12T11:48:56Z
dc.date.issued 2023-07-15
dc.identifier.citation Huang, Wen-Hua;...et.al. (2023). "Modified Atangana-Baleanu fractional operators involving generalized Mittag-Leffler function", Alexandria Engineering Journal, Vol.75, pp.639-648. tr_TR
dc.identifier.issn 11100168
dc.identifier.uri http://hdl.handle.net/20.500.12416/6873
dc.description.abstract In this paper, we are going to deal with fractional operators (FOs) with non-singular kernels which is not an easy task because of its restriction at the origin. In this work, we first show the boundedness of the extended form of the modified Atangana-Baleanu (A-B) Caputo fractional derivative operator. The generalized Laplace transform is evaluated for the introduced operator. By using the generalized Laplace transform, we solve some fractional differential equations. The corresponding form of the Atangana-Baleanu Caputo fractional integral operator is also established. This integral operator is proved bounded and obtained its Laplace transform. The existence and Hyers-Ulam stability is explored. In the last results, we studied the relation between our defined operators. The operators in the literature are obtained as special cases for these newly explored FOs. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1016/j.aej.2023.05.037 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Fractional Differential Equation tr_TR
dc.subject Fractional Operators tr_TR
dc.subject Generalized Laplace Transform tr_TR
dc.subject Mittag–Leffler Function tr_TR
dc.title Modified Atangana-Baleanu fractional operators involving generalized Mittag-Leffler function tr_TR
dc.type article tr_TR
dc.relation.journal Alexandria Engineering Journal tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 75 tr_TR
dc.identifier.startpage 639 tr_TR
dc.identifier.endpage 648 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster