Abstract:
The major goal of the current paper is to conduct a detailed study on a generalized KdV equation (gKdVE) and its non-singular multi-complexiton wave. More precisely, first the multi-shock wave of the governing model is retrieved using the principle of linear superposition. Based on the multi-shock wave and the techniques adopted by Zhou and Manukure, the non-singular multi-complexiton wave to the gKdVE is then constructed with the help of symbolic computations. The dynamical properties of single and double shock waves as well as non-singular single and double complexiton waves are analyzed by representing a group of 3D-plots. The achievements of the present paper take an important step in completing the research on the generalized KdV equation.