dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Ibrahim, Rabha W.
|
|
dc.date.accessioned |
2024-01-17T13:34:16Z |
|
dc.date.available |
2024-01-17T13:34:16Z |
|
dc.date.issued |
2023 |
|
dc.identifier.citation |
Baleanu, D.; Ibrahim, Rabha W. (2023). "Optical applications of a generalized fractional integro-differential equation with periodicity", AIMS Mathematics, Vol.8, No.5, pp.11953-11972. |
tr_TR |
dc.identifier.issn |
24736988 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/6919 |
|
dc.description.abstract |
Impulsive is the affinity to do something without thinking. In this effort, we model a mathematical formula types integro-differential equation (I-DE) to describe this behavior. We investigate periodic boundary value issues in Banach spaces for fractional a class of I-DEs with non-quick impulses. We provide numerous sufficient conditions of the existence of mild outcomes for I-DE utilizing the measure of non-compactness, the method of resolving domestic, and the fixed point result. Lastly, we illustrate a set of examples, which is given to demonstrate the investigations key findings. Our findings are generated some recent works in this direction. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.3934/math.2023604 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Fractional Calculus |
tr_TR |
dc.subject |
Fractional Differential Equation |
tr_TR |
dc.subject |
Fractional Differential Operator |
tr_TR |
dc.subject |
Fractional İntegral Operator |
tr_TR |
dc.title |
Optical applications of a generalized fractional integro-differential equation with periodicity |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
AIMS Mathematics |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
8 |
tr_TR |
dc.identifier.issue |
5 |
tr_TR |
dc.identifier.startpage |
11953 |
tr_TR |
dc.identifier.endpage |
11972 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |