DSpace@Çankaya

Optimal recovery and volume estimates

Basit öğe kaydını göster

dc.contributor.author Kushperl, Alexander
dc.date.accessioned 2024-01-18T13:08:49Z
dc.date.available 2024-01-18T13:08:49Z
dc.date.issued 2023-12
dc.identifier.citation Kushpel, A. (2023). "Optimal recovery and volume estimates", Journal of Complexity, Vol.79. tr_TR
dc.identifier.issn 0885064X
dc.identifier.uri http://hdl.handle.net/20.500.12416/6934
dc.description.abstract We study volumes of sections of convex origin-symmetric bodies in Rn induced by orthonormal systems on probability spaces. The approach is based on volume estimates of John-Löwner ellipsoids and expectations of norms induced by the respective systems. The estimates obtained allow us to establish lower bounds for the radii of sections which gives lower bounds for Gelfand widths (or linear cowidths). As an application we offer a new method of evaluation of Gelfand and Kolmogorov widths of multiplier operators. In particular, we establish sharp orders of widths of standard Sobolev classes Wpγ, γ>0 in Lq on two-point homogeneous spaces in the difficult case, i.e. if 1[removed] tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1016/j.jco.2023.101780 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Convex Body tr_TR
dc.subject Recovery tr_TR
dc.subject Volume tr_TR
dc.title Optimal recovery and volume estimates tr_TR
dc.type article tr_TR
dc.relation.journal Journal of Complexity tr_TR
dc.contributor.authorID 279144 tr_TR
dc.identifier.volume 79 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Bu öğenin dosyaları:

Dosyalar Boyut Biçim Göster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster