dc.contributor.author |
El-Deeb, Ahmed A.
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Awrejcewicz, Jan
|
|
dc.date.accessioned |
2024-02-05T12:49:27Z |
|
dc.date.available |
2024-02-05T12:49:27Z |
|
dc.date.issued |
2022-08 |
|
dc.identifier.citation |
El-Deeb, Ahmed A.; Baleanu, Dumitru; Awrejcewicz, Jan (2022). "(γ,a)-Nabla Reverse Hardy–Hilbert-Type Inequalities on Time Scales", Symmetry, Vol.14, No.8. |
tr_TR |
dc.identifier.issn |
20738994 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/7074 |
|
dc.description.abstract |
In this article, using a ((Formula presented.),a)-nabla conformable integral on time scales, we study several novel Hilbert-type dynamic inequalities via nabla time scales calculus. Our results generalize various inequalities on time scales, unifying and extending several discrete inequalities and their corresponding continuous analogues. We say that symmetry plays an essential role in determining the correct methods with which to solve dynamic inequalities. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.3390/sym14081714 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Hölder Inequality |
tr_TR |
dc.subject |
Jensen Inequality |
tr_TR |
dc.subject |
Nabla Calculus |
tr_TR |
dc.subject |
Time Scales |
tr_TR |
dc.title |
(γ,a)-Nabla Reverse Hardy–Hilbert-Type Inequalities on Time Scales |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Symmetry |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
14 |
tr_TR |
dc.identifier.issue |
8 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |