dc.contributor.author |
El-Deeb, Ahmed A.
|
|
dc.contributor.author |
Makharesh, Samer D.
|
|
dc.contributor.author |
Askar, Sameh S.
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2024-02-14T07:48:52Z |
|
dc.date.available |
2024-02-14T07:48:52Z |
|
dc.date.issued |
2022 |
|
dc.identifier.citation |
El-Deeb, Ahmed A.;...et.al. (2022). "Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales", AIMS Mathematics, Vol.7, No.8, pp.14099-14116. |
tr_TR |
dc.identifier.issn |
24736988 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/7192 |
|
dc.description.abstract |
In this work, we prove several new (γ, a)-nabla Bennett and Leindler dynamic inequalities on time scales. The results proved here generalize some known dynamic inequalities on time scales, unify and extend some continuous inequalities and their corresponding discrete analogues. Our results will be proved by using integration by parts, chain rule and Hölder inequality for the (γ, a)-nabla-fractional derivative on time scales. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.3934/math.2022777 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
26D15 |
tr_TR |
dc.subject |
26E70 |
tr_TR |
dc.subject |
34N05 |
tr_TR |
dc.subject |
Steffensen’s Inequality |
tr_TR |
dc.subject |
Dynamic Inequality |
tr_TR |
dc.subject |
Dynamic Integral |
tr_TR |
dc.subject |
Time Scales Mathematics Subject Classification: 26D10 |
tr_TR |
dc.title |
Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
AIMS Mathematics |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
7 |
tr_TR |
dc.identifier.issue |
8 |
tr_TR |
dc.identifier.startpage |
14099 |
tr_TR |
dc.identifier.endpage |
14116 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |