Abstract:
Enhancement of heat transfer due to stretching sheets can be appropriately controlled by the movement of the nanofluids. The concentration and settling of the nanoparticles in the viscous MHD fluid and bioconvection are addressed. In this scenario, the fluid flow occurring in the presence of a normal and uniform magnetic field, thermal radiation, and chemical reaction is taken into account. For the two-dimensional flow with heat and mass transfer, five dependent variables and three independent variables constitute the system of partial differential equations. For this purpose, similarity functions are involved to convert these equations to corresponding ODEs. Then, the Runge-Kutta method with shooting technique is used to evaluate the required findings with the utilization of MATLAB script. The fluid velocity becomes slow against the strength of the magnetic parameter. The temperature rises with the parameter of Brownian motion and thermophoresis. The bioconvection Lewis number diminishes the velocity field. Compared with the existing literature, the results show satisfactory congruences.