Özet:
Variance of beam displacement and short-term and long-term spreading of a Gaussian beam propagating in the presence of underwater turbulence are examined by using the oceanic turbulence optical power spectrum (OTOPS). Analytical expressions for both beam wander displacement variance and beam spreading are presented. Results show that the underwater turbulent channel causes deflection from the on-axis mean irradiance and brings significant wander and spreading effects to the propagating Gaussian beam wave. The variations of beam wander and short- and long-term spreading are obtained depending on the underwater medium parameters such as the average temperature, average salinity concentration, temperature-salinity gradient ratio, and temperature and energy dissipation rates. In particular, the real values of the average temperature and salinity concentration of turbulent water are used to obtain the results. In addition, the effects of propagation distance, Gaussian beam source size, and wavelength are shown. The results demonstrate that the underwater turbulent channel brings displacements in the centroid and spreading of the optical beam.