dc.contributor.author |
Magadevan, Prabavathy
|
|
dc.contributor.author |
Karpagam, Saravanan
|
|
dc.contributor.author |
Karapınar, Erdal
|
|
dc.date.accessioned |
2024-03-20T13:01:37Z |
|
dc.date.available |
2024-03-20T13:01:37Z |
|
dc.date.issued |
2022-01-01 |
|
dc.identifier.citation |
Magadevan, Prabavathy; Karpagam, Saravanan; Karapınar, E. (2022). "Existence of fixed point and best proximity point of p-cyclic orbital φ-contraction map", Nonlinear Analysis: Modelling and Control, Vol.27, No.1, pp.91-101. |
tr_TR |
dc.identifier.issn |
13925113 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/7664 |
|
dc.description.abstract |
In this manuscript, p-cyclic orbital φ-contraction map over closed, nonempty, convex subsets of a uniformly convex Banach space X possesses a unique best proximity point if the auxiliary function φ is strictly increasing. The given result unifies and extend some existing results in the related literature. We provide an illustrative example to indicate the validity of the observed result. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.15388/NAMC.2022.27.25188 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Best Proximity Point |
tr_TR |
dc.subject |
Fixed Point |
tr_TR |
dc.subject |
P-cyclic Map |
tr_TR |
dc.subject |
P-cyclic Orbital Nonexpansive Map |
tr_TR |
dc.subject |
Best proximity point; Fixed point; P-cyclic map; P-cyclic orbital nonexpansive map |
tr_TR |
dc.title |
Existence of fixed point and best proximity point of p-cyclic orbital φ-contraction map |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Nonlinear Analysis: Modelling and Control |
tr_TR |
dc.contributor.authorID |
19184 |
tr_TR |
dc.identifier.volume |
27 |
tr_TR |
dc.identifier.issue |
1 |
tr_TR |
dc.identifier.startpage |
91 |
tr_TR |
dc.identifier.endpage |
101 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |