DSpace Repository

Fixed point theorems for controlled neutrosophic metric-like spaces

Show simple item record

dc.contributor.author Uddin, Fahim
dc.contributor.author Ishtiaq, Umar
dc.contributor.author Saleem, Naeem
dc.contributor.author Ahmad, Khaleel
dc.contributor.author Jarad, Fahd
dc.date.accessioned 2024-03-26T12:49:55Z
dc.date.available 2024-03-26T12:49:55Z
dc.date.issued 2022
dc.identifier.citation Uddin, Fahim;...et.al. (2022). "Fixed point theorems for controlled neutrosophic metric-like spaces", AIMS Mathematics, Vol.7, No.12, pp.20711-20739. tr_TR
dc.identifier.issn 24736988
dc.identifier.uri http://hdl.handle.net/20.500.12416/7741
dc.description.abstract In this paper, we establish the concept of controlled neutrosophic metric-like spaces as a generalization of neutrosophic metric spaces and provide several non-trivial examples to show the spuriousness of the new concept in the existing literature. Furthermore, we prove several fixed point results for contraction mappings and provide the examples with their graphs to show the validity of the results. At the end of the manuscript, we establish an application to integral equations, in which we use the main result to find the solution of the integral equation. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.3934/math.20221135 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Controlled Metric Space tr_TR
dc.subject Controlled Neutrosophic Metric-Like Space tr_TR
dc.subject Fixed Point tr_TR
dc.subject İntegral Equations tr_TR
dc.subject Metric-Like Space tr_TR
dc.subject Unique Solution tr_TR
dc.title Fixed point theorems for controlled neutrosophic metric-like spaces tr_TR
dc.type article tr_TR
dc.relation.journal AIMS Mathematics tr_TR
dc.contributor.authorID 234808 tr_TR
dc.identifier.volume 7 tr_TR
dc.identifier.issue 12 tr_TR
dc.identifier.startpage 20711 tr_TR
dc.identifier.endpage 20739 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record