DSpace Repository

Global stability of local fractional Hénon-Lozi map using fixed point theory

Show simple item record

dc.contributor.author Ibrahim, Rabha W.
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2024-03-28T12:20:33Z
dc.date.available 2024-03-28T12:20:33Z
dc.date.issued 2022
dc.identifier.citation Ibrahim, Rabha W.; Baleanu, D. (2022). "Global stability of local fractional Hénon-Lozi map using fixed point theory", AIMS Mathematics, Vol. 7, No.6, pp.11399-11416. tr_TR
dc.identifier.issn 24736988
dc.identifier.uri http://hdl.handle.net/20.500.12416/7808
dc.description.abstract We present an innovative piecewise smooth mapping of the plane as a parametric discrete-time chaotic system that has robust chaos over a share of its significant organization parameters and includes the generalized Henon and Lozi schemes as two excesses and other arrangements as an evolution in between. To obtain the fractal Henon and Lozi system, the generalized Henon and Lozi system is defined by adopting the fractal idea (FHLS). The recommended system’s dynamical performances are investigated from many angles, such as global stability in terms of the set of fixed points. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.3934/math.2022636 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Differential Operator tr_TR
dc.subject Fractal tr_TR
dc.subject Fractal Chaotic tr_TR
dc.subject Fractional Calculus tr_TR
dc.subject Fractional Differential Equation tr_TR
dc.title Global stability of local fractional Hénon-Lozi map using fixed point theory tr_TR
dc.type article tr_TR
dc.relation.journal AIMS Mathematics tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 7 tr_TR
dc.identifier.issue 6 tr_TR
dc.identifier.startpage 11399 tr_TR
dc.identifier.endpage 11416 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record