DSpace@Çankaya

Generalized Quantum Integro-Differential Fractional Operator with Application of 2D-Shallow Water Equation in a Complex Domain

Basit öğe kaydını göster

dc.contributor.author Rabha, W. Ibrahim
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2024-04-03T13:33:20Z
dc.date.available 2024-04-03T13:33:20Z
dc.date.issued 2021
dc.identifier.citation Rabha, W. Ibrahim; Baleanu, D. (2021). "Generalized Quantum Integro-Differential Fractional Operator with Application of 2D-Shallow Water Equation in a Complex Domain", Axioms, Vol.10, No.342, pp. 1-12. tr_TR
dc.identifier.issn 2075-1680
dc.identifier.uri http://hdl.handle.net/20.500.12416/7848
dc.description.abstract In this paper, we aim to generalize a fractional integro-differential operator in the open unit disk utilizing Jackson calculus (quantum calculus or q-calculus). Next, by consuming the generalized operator to define a formula of normalized analytic functions, we present a set of integral inequalities using the concepts of subordination and superordination. In addition, as an application, we determine the maximum and minimum solutions of the extended fractional 2D-shallow water equation in a complex domain. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof https://doi.org/10.3390/axioms10040342 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Quantum Calculus tr_TR
dc.subject Fractional Calculus tr_TR
dc.subject Analytic Function tr_TR
dc.subject Subordination tr_TR
dc.subject Univalent Function tr_TR
dc.subject Open Unit Disk tr_TR
dc.subject Differential Operator tr_TR
dc.subject Convolution Operator tr_TR
dc.title Generalized Quantum Integro-Differential Fractional Operator with Application of 2D-Shallow Water Equation in a Complex Domain tr_TR
dc.type article tr_TR
dc.relation.journal Axioms tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 10 tr_TR
dc.identifier.issue 342 tr_TR
dc.identifier.startpage 1 tr_TR
dc.identifier.endpage 12 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü tr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster