dc.contributor.author |
Rabha, W. Ibrahim
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2024-04-03T13:33:20Z |
|
dc.date.available |
2024-04-03T13:33:20Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
Rabha, W. Ibrahim; Baleanu, D. (2021). "Generalized Quantum Integro-Differential Fractional Operator with Application of 2D-Shallow Water Equation in a Complex Domain", Axioms, Vol.10, No.342, pp. 1-12. |
tr_TR |
dc.identifier.issn |
2075-1680 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/7848 |
|
dc.description.abstract |
In this paper, we aim to generalize a fractional integro-differential operator in the open unit disk utilizing Jackson calculus (quantum calculus or q-calculus). Next, by consuming the generalized operator to define a formula of normalized analytic functions, we present a set of integral inequalities using the concepts of subordination and superordination. In addition, as an application, we determine the maximum and minimum solutions of the extended fractional 2D-shallow water equation in a complex domain. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
https://doi.org/10.3390/axioms10040342 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Quantum Calculus |
tr_TR |
dc.subject |
Fractional Calculus |
tr_TR |
dc.subject |
Analytic Function |
tr_TR |
dc.subject |
Subordination |
tr_TR |
dc.subject |
Univalent Function |
tr_TR |
dc.subject |
Open Unit Disk |
tr_TR |
dc.subject |
Differential Operator |
tr_TR |
dc.subject |
Convolution Operator |
tr_TR |
dc.title |
Generalized Quantum Integro-Differential Fractional Operator with Application of 2D-Shallow Water Equation in a Complex Domain |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Axioms |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
10 |
tr_TR |
dc.identifier.issue |
342 |
tr_TR |
dc.identifier.startpage |
1 |
tr_TR |
dc.identifier.endpage |
12 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |